5th Sino-German symposium "The silicon age" 杭州 2015-09

[M= LPDN 1E16

Thermoelectricity of silicon nanostructures

Hartmut S. Leipner Katrin Bertram, Markus Trutschel, Bodo Fuhrmann, Aleksander Tonkikh^{*}, Peter Werner^{*}

Veature

Martin-Luther-Universität Halle–Wittenberg *Max-Planck-Institut für Mikrostrukturphysik Halle

Martin-Luther-Universität Halle–Wittenberg

Weinberg Campus

Interdisciplinary Center of Materials Science

Nanotechnology pilot plant

- Nanostructuring: lithography, thin film deposition, device prototyping
- Nanoanalysis: electron microscopy, optical spectroscopy,

positron annihilation

1800 m² labs, 620 m² cleanroom

Research

- Energy conversion: photovoltaics, photonics
- Energy storage: batteries
- Energy recycling: thermoelectrics

Thermoelectric devices

Thermoelectric generator

- Heat \rightarrow electricity
- Heat flow drives free e⁻ and h⁺
 from hot to cold

Seebeck effect

$$U = \int_{T_1}^{T_2} S \, \mathrm{d}T$$

Thermoelectrics

ANNALEN DER PHYSIK.

JAHRGANG 1826, ERSTES STÜCK.

I. Ueber die magnetifche Polarifation der Metalle und Erze durch Temperatur - Differenz;

> von Dr. T. J. Seebeck.

Power Node [Micropelt]

[NASA]

Basic terms of thermoelectrics

Conversion efficiency

Determined by the dimensionless figure of merit

$$ZT = \frac{S^2\sigma}{\kappa}T$$

(S² σ power factor, σ electrical conductivity, κ thermal conductivity, *T* temperature)

- High *ZT* requires $S^2\sigma$ **1** and $\kappa = \kappa_e + \kappa_{ph} \downarrow$
- Problem: Coupling between electrical and thermal conductivity
- Topical materials $ZT \le 1$
- Taylor materials by nanostructuring: Superlattices, nanowires, quantum dots

Si as thermoelectric material

Thermal conductivity of the lattice κ_{ph} for semiconductor single crystals [Fan 2002]

Nanostructuring

- Bandstructure engineering
- Phonon scattering at interfaces, porous surfaces, defects

Superlattices

Single-crystalline multilayer and quantum dot superlattices

$$ZT = \frac{S^2 \sigma}{\kappa_{\rm ph} + \kappa_{\rm e}} T$$

Thermoelectric efficiency *ZT* for anisotropic Bi₂Te₃ layers of the thickness *t* [Hicks, Dresselhaus 1993]

Reduction of thermal conductivity

Cross-plane transport in SL \rightarrow **Coherent phonon scattering at interfaces**

	Mean free path
Phonon 🔍	$\ell \approx 260 \text{ nm}$
Electron •	ℓ _e ~ 10 nm

$$\kappa_{\rm ph} = \frac{1}{3}C\upsilon\ell$$

(*C* lattice heat capacity, *v* speed of sound)

If layer thickness $a < \ell$, the thermal conductivity of the lattice κ_{ph} is reduced.

Phonon scattering at interfaces

Phonon scattering

Superlattices, composites, quantum dot SLs, random multilayers

MD Simulation [Frachioni, White 2012]

Reduction in the thermal conductivity

- Different approaches through nanostructures like
 - Superlattices (SL)
 - Nanowires (NW)
 - Quantum-dot

superlattices (QDSL)

 Nanowires containing superlattices (SLNW)

MBE of Si-Ge layers

• Stack of alternating layers of Si and $Si_{1-x}Ge_x$ alloy

Precision of single layers: ± 0.2 nm

Quantum dot Si-Ge superlattice

(001), (111) orientation of the Si substrate

◆ Si (111) → flat layers

[Tonkikh *et al* 2011]

◆ Si (100) → Ge islands (density ~ $10^9...10^{11}$ cm⁻²)

100 nm

Cross-plane measurement

- Direct measurement of thin layers on a substrate rather demanding
- Cross-plane and in-plane electrical conductivity of specially designed samples (mesa) obtained via transmission line model
- Determination of the contact resistances
- Small error of resistivity measurement only with slight doping

Current-voltage distribution

Finite-element simulation of the current–voltage distribution in mesa structures of different widths

Seebeck cross-plane measurement

- Measurement of the thermoelectric voltage close to the superlattice mesa
- Metals 1 and 2 form the thermocouple
 - \rightarrow determination of the temperature difference ΔT
- Measurement of further thermovoltages to eliminate the in-plane contribution
- Where to place the heater?

3ω measurements

- ✦ Deposition of a 100 nm insulating Al₂O₃ layer by ALD
- Reference sample without the multilayer structure
- Differential 3ω measurement of the thermal conductivity of thin films, $U_{3\omega} = f(\kappa)$

Temperature increase

- Current $I = I_0 \cos \omega t$ is related to the increase in temperature $\Delta T = \Delta T_0 \cos(2\omega t + \varphi)$
- Resistance of a metallic wire

 $R = R_0(1 + \alpha \Delta T)$

Voltage $U = RI = R_0[1 + \alpha \Delta T_0 \cos(2 \omega t + \varphi)] I_0 \cos \omega t$

• The $U_{3\omega} = 1/2 I_0 R_0 \alpha \Delta T_0$ component contains information about the thermal properties of the underlying matter and is measured with a lock-in amplifier.

[Jacquot et al. ETC 1999]

Thermal conductivity of the thin film

$$\kappa = \frac{P(t_{\rm tot} - t_{\rm ref})}{2wb({\rm Re}(\Delta T_{\rm tot}) - {\rm Re}(\Delta T_{\rm ref}))}$$

Measurement at a reference sample of the thickness t_{ref} and the sample containing the thin film with the total thickness t_{tot} (*b* width of the bolometer)

Thin film thermal conductivity

1D heat flow

Measurement with one bolometer stripe, width $b \gg d_{\rm f}$

 $\Delta T_{\rm f} \rightarrow 1D$ thermal conductivity $\kappa_{\rm 1D}$

2D heat flow

Measurements with two bolometer stripes, b_1 and b_2

 $\Delta T_{\rm f} \rightarrow$ in-plane thermal conductivity κ_{\parallel}

 \rightarrow cross-plane thermal conductivity κ_{\perp}

Bolometric temperature increase ΔT measured in a multilayer and a reference sample as a function of the frequency

SiGe Superlattices

Thermal conductivity of periodic SL

In-plane and cross-plane thermal conductivities for SLs with different Ge contents and periods

Aperiodic multilayers

20 nm

1.2 nm Ge + 12 nm Si 1.2 nm Ge + 12 nm Si 1.8 nm Ge + 12 nm Si 0.9 nm Ge + 12 nm Si 1.6 nm Ge + 12 nm Si $6 \times , \approx 600$ nm

0.6 nm Ge + 4.1 nm Si 0.3 nm Ge + 5.1 nm Si 0.8 nm Ge + 4.8 nm Si 0.6 nm Ge + 5.7 nm Si 0.6 nm Ge + 3.8 nm Si $34x_{,} \approx 940$ nm

Ge content

2.9 %

3.3 %

Results of random multilayers

Thermal conductivities in a random multilayer (2.9 % Ge) in comparison to a superlattice (3.5 % Ge).

Defect issues

[Watling, Paul 2011]

Comparison of thermal conductivities

- Lowest κ_{\perp} for SL with highest Ge content
- κ_⊥ a function of the SL period
 [cf. *e.g.* Rawat *et al*: J Appl Phys **105** (2009)
 024909]
- Only a small reduction in κ⊥ for random multilayers[↑] compared to SL[↑] observed due to low mass ratio in the multilayers investigated so far
- Random multilayers exhibit as well a decrease in κ_{\parallel} by $\approx 50 \%$

[Frachioni, White 2012]

Comparison of thermal conductivities

Si-Ge-Sn

SiSn growth

MBE at 200 °C

Cross-section TEM

Tonkikh et al J Cryst Growth **392** (2014) 49

High-resolution X-ray Ω -2 θ scan

SiSn multilayers

Defective growth with stacking faults ①, voids ②, amorphous Si/SiSn ③

Defect-free multilayers with Si insertions grown at high temperatures ④

Tonkikh et al J Cryst Growth 392 (2014) 49

Si-Ge nanowires

Geyer *et al* Nano Lett **9** (2009) 3106; J Phys Chem **116** (2012) 13446

Silicon nanowires fabricated by metal-assisted etching

Si–Ge superlattice nanowires, Ø below 20 nm

Further reduction of the thermal conductivity 100× smaller than bulk Si for Ø below 100 nm

Si nanoparticles in Al₂O₃

 $3 \operatorname{SiO}_2 + 4 \operatorname{Al} \rightarrow 3 \operatorname{Si} + 2 \operatorname{Al}_2 \operatorname{O}_3$

Fabrication of nanoparticles in thin-film oxides

- Annealing $T > 560 \,^{\circ}\text{C}$
- Conductivity ~ 100 S/cm, Seebeck coefficient S \approx 400 μ V/K

Composite films with Si quantum dots

High power factor can be achieved near to the percolation limit ($\sigma > 100$ S/cm, $S \approx 400 \mu$ V/K), thermal conductivity close to the oxide

Roczen *et al* J Non-Cryst Sol (2011) 10.1016/j.jnoncrysol.2011.11.024

Conclusions

- High-efficient thermoelectric thin-film devices based on Si and Ge possible
- Figure of merit for optimum structures higher than 2 for temperatures of RT ... 300 °C
- Diverse approaches such as Si–Ge SL, incorporation of defects, fabrication of nanopillars
- Technological feasibility: Epitaxy, PVD etc.

References

- Snyder, Toberer: Nature Mater 7 (2008) 105.
- Fan, UC Santa Barbara, thesis 2002.
- Salleh, Ikeda: J Electron Mater 40 (2011) 903.
- Dismukes *et al*: J App Phys 35 (1964) 2899.
- ✦ Lee *et al*: Appl Phys Lett **70** (1997) 2957.
- ♦ Geballe, Hull: Phys. Rev 94 (1954) 1134.
- Frachioni, White: J Appl Phys **112** (2012) 14320.
- ✦ Hicks, Dresselhaus: Phys. Rev. B 47 (1993) 12727.
- ✤ Jacquot *et al*: ETS conference (1999).
- Tonkikh et al Thin Sol Films (2011) doi: 10.1016/j.tsf.2011.10.049.
- Tonkikh et al J Cryst Growth 392 (2014) 49
- Watling, Paul: J Appl Phys **110** (2011) 114508.
- ✦ Geyer *et al*: Nano Lett **9** (2009) 3106.
- Geyer *et al*: J Phys Chem **116** (2012) 13446.
- Roczen *et al* J Non-Cryst Sol (2011) 10.1016/j.jnoncrysol.2011.11.024.